Homework 1

1. Estimating logarithm function. For $x \in[0,1)$, we shall use the identity that

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots .
$$

(a) (5 points) Prove that $\ln (1-x) \leqslant-x-\frac{x^{2}}{2}$. Solution.
(b) (5 points) For $x \in[0,1 / 2]$, prove that

$$
\ln (1-x) \geqslant-x-x^{2} .
$$

Solution.

2. Tight Estimations Provide meaningful upper-bounds and lower-bounds for the following expressions.
(a) (10 points) $S_{n}=\sum_{i=1}^{n} \ln i$. Solution.
(b) (5 points) $A_{n}=n!$. Solution.
(c) (10 points) $B_{n}=\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$. Solution.
3. Understanding Joint Distribution. Recall that in the lectures we considered the joint distribution (\mathbb{T}, \mathbb{B}) over the sample space $\{4,5, \ldots, 11\} \times\{\mathrm{T}, \mathrm{F}\}$, where \mathbb{T} represents the time I wake up in the morning, and \mathbb{B} represents whether I have breakfast or not. The following table summarizes the joint probability distribution.

t	b	$\mathbb{P}[\mathbb{T}=t, \mathbb{B}=b]$
4	T	0.04
4	F	0.02
5	T	0.03
5	F	0.01
6	T	0.20
6	F	0.10
7	T	0.30
7	F	0.05
8	T	0.15
8	F	0
9	T	0.04
9	F	0.04
10	T	0
10	F	0.01
11	T	0
11	F	0.01

Calculate the following probabilities.
(a) (5 points) Calculate the probability that I wake up at 9 a.m. or earlier, but do not have breakfast. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 9, \mathbb{B}=\mathrm{F}]$.

Solution.

(b) (5 points) Calculate the probability that I wake up at 9 a.m. or earlier. That is, calculate $\mathbb{P}[\mathbb{T} \leqslant 9]$.
Solution.
(c) (5 points) Calculate the probability that I skip breakfast conditioned on the fact that I woke up at 9 a.m. or earlier. That is, compute $\mathbb{P}[\mathbb{B}=F \mid \mathbb{T} \leqslant 9]$. Solution.
4. Random Walk. There is a frog sitting at the origin $(0,0)$ in the first quadrant of a two-dimensional Cartesian plane. The frog first jumps uniformly at random along the X -axis to some point ($\mathbb{X}, 0$), where $\mathbb{X} \in\{1,2,3,4,5,6,7,8\}$. Then, it jumps uniformly at random along the Y -axis to some point (\mathbb{X}, \mathbb{Y}), where $\mathbb{Y} \in\{1,2,3,4,5\}$. So (\mathbb{X}, \mathbb{Y}) represents the final position of the frog after these two jumps. Note that \mathbb{X} and \mathbb{Y} are two independent random variables that are uniformly distributed over their respective sample spaces.
(a) (5 points) What is the probability that the frog jumps more than 3 units along the Y -axis. That is, compute $\mathbb{P}[\mathbb{Y}>3]$.

Solution.

(b) (5 points) What is the probability that the final position of the frog is within the circle $X^{2}+Y^{2}=9$? That is, compute $\mathbb{P}\left[\mathbb{X}^{2}+\mathbb{Y}^{2} \leqslant 9\right]$.
Solution.
(c) (5 points) What is the probability that the frog has jumped 2 units along X-axis conditioned on the fact that its final position is outside the circle $X^{2}+Y^{2}=9$? That is, compute $\mathbb{P}\left[\mathbb{X}=2 \mid \mathbb{X}^{2}+\mathbb{Y}^{2}>9\right]$.
Solution.
5. Coin Tossing Word Problem. We have three (independent) coins represented by random variables $\mathbb{C}_{1}, \mathbb{C}_{2}$, and \mathbb{C}_{3}.
(i) The first coin has $\mathbb{P}\left[\mathbb{C}_{1}=H\right]=\frac{2}{7}, \mathbb{P}\left[\mathbb{C}_{1}=T\right]=\frac{5}{7}$,
(ii) The second coin has $\mathbb{P}\left[\mathbb{C}_{2}=H\right]=\frac{3}{4}$ and $\mathbb{P}\left[\mathbb{C}_{2}=T\right]=\frac{1}{4}$, and
(iii) The third coin has $\mathbb{P}\left[\mathbb{C}_{3}=H\right]=\frac{2}{5}$ and $\mathbb{P}\left[\mathbb{C}_{3}=T\right]=\frac{3}{5}$.

Consider the following experiment.
(A) Toss the first coin. Let the outcome of the first coin-toss be ω_{1}.
(B) If $\omega_{1}=H$, then we toss the second coin twice. Otherwise, (i.e., if $\omega_{1}=T$) toss the third coin twice. Let the two outcomes of this step be represented by ω_{2} and ω_{3}.
(C) Output $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$.

Based on this experiment, compute the probabilities below.
(a) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ are H (head)?
Solution.
(b) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes are H, conditioned on the fact that the first outcome was T ?

Solution.

(c) (5 points) In the experiment mentioned above, what is the probability that a majority of the three outcomes are different from the first outcome?
Solution.

6. An Useful Estimate.

For an integers n and t satisfying $0 \leqslant t \leqslant n / 2$, define

$$
P_{n}(t)=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{t}{n}\right)
$$

We will estimate the above expression. (Remark: You shall see the usefulness of this estimation in the topic "Birthday Paradox" that we shall cover in the forthcoming lectures.)
(a) (10 points) Show that

$$
\exp \left(-\frac{t^{2}}{2 n}-\frac{t}{2 n}-\frac{\Theta\left(t^{3}\right)}{6 n^{2}}\right) \geqslant P_{n}(t) \geqslant \exp \left(-\frac{t^{2}}{2 n}-\frac{t}{2 n}-\frac{\Theta\left(t^{3}\right)}{3 n^{2}}\right) .
$$

Solution.

(b) (5 points) When $t=\sqrt{2 c n}$, where c is a positive constant, the expression above is

$$
P_{n}(t)=\exp (-c-\Theta(1 / \sqrt{n}))
$$

Solution.
7. Jensen's Inequality Proof.(15 points) In this problem, our objective is to prove the Jensen's inequality using the Lagrange form of the Taylor's Remainder Theorem. These theorems are presented below.

Definition 1 (Convex Functions). A twice-differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ is convex if (and only if) $g^{\prime \prime}(x) \geqslant 0$ for all $x \in \mathbb{R}$.

Theorem 1 (Jensen's Inequality). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then, for any $p \in[0,1]$ and $q=1-p$, the following inequality holds:

$$
g(p x+q y) \leqslant p \cdot g(x)+q \cdot g(y) .
$$

Let $f^{(i)}$ be the i-th derivative of the function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Theorem 2 (Lagrange form of the Taylor's Remainder Theorem). For any $k \in \mathbb{N}$ and $(k+1)$-differentiable function f the following result holds. For every $a, \varepsilon \in \mathbb{R}$, there exists $\theta \in(0,1)$ such that
$f(a+\varepsilon)=\left(f(a)+f^{(1)}(a) \frac{\varepsilon}{1!}+f^{(2)}(a) \frac{\varepsilon^{2}}{2!}+\ldots+f^{(k)}(a) \frac{\varepsilon^{k}}{k!}\right)+f^{(k+1)}(a+\theta \varepsilon) \frac{\varepsilon^{k+1}}{(k+1)!}$
where the term $R=f^{(k+1)}(a+\theta \varepsilon) \frac{\varepsilon^{k+1}}{(k+1)!}$ is the Lagrange Remainder.

Solution.

8. Bonus Problem: Generalized Jensen's Inequality [Probability].(0 points) In the context of probability theory, Jensen's Inequality is typically stated in the following form in terms of the expected value.

Theorem 3 (Jensen's Inequality). Let \mathbf{X} be a real-valued random variable. Let f be a convex function. Suppose $f(\mathbb{E}[\mathbf{X}])$ and $\mathbb{E}[f(\mathbf{X})]$ are both finite. Then

$$
f(\mathbb{E}[\mathbf{X}]) \leqslant \mathbb{E}[f(\mathbf{X})] .
$$

Solution.

